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Abstract

Data-driven approaches are playing an increased role
in building automation. This can, in part, be at-
tributed to building operation and energy manage-
ment system data becoming more readily accessible.
A particular application is models to allow predictive
control harnessing building energy flexibility, which
is of interest to different stakeholders including; en-
ergy utilities, aggregators and end-users. Given the
possibility of thousands of data features, feature selec-
tion becomes a critical part of the model development
process. This paper considers various filter, wrapper
and embedded methods applied in conjunction with
three predictors in addressing the problem of con-
structing a suitable data-driven model to facilitate
predictive control and provision of energy flexibility
in a large commercial building. The feature selec-
tion algorithms are generally shown to significantly
reduce model evaluation time and, in some cases, in-
crease model accuracy. A random forest model with
embedded feature selection was found to be the opti-
mal solution in terms of model accuracy.

Introduction

Renewable energy sources such as wind and solar are
intrinsically variable by nature and this creates a sta-
bility issue for the electrical grid with the fluctuating
supply needing to be balanced with the demand
(Lund et al. (2015)). With increasing penetration
of such sources in most grids, balancing of national
grids is becoming a more challenging problem. The
flexibility to manage any mismatch can come from
either the supply side (through the use of dedicated
conventional power plants or storage) or from the
demand side (Lund et al. (2015)). Hull (2012) cate-
gorises Demand Side Management (DSM) broadly as
actions that influence the quantity, patterns of use or
the primary source of energy consumed by end users.
Buildings represent about 40% of the total primary
energy consumption in Europe (Economidou et al.
(2011)). This fact combined with their potential for
thermal energy storage, makes buildings a very suit-
able candidate for the provision of energy flexibility.
Most buildings use Heating, Ventilation and Air

Conditioning (HVAC) systems for space conditioning
and this HVAC load can be shifted using the thermal
mass of the building without compromising occupant
comfort. The International Energy Agency (IEA)
Energy in Buildings and Communities Program
(EBC) Annex 67 (Jensen et al. (2017)) provides
the current working definition of building energy
flexibility as ”the ability to manage building demand
and generation according to local climate conditions,
user needs, and energy network requirements”.
To take advantage of thermal mass for demand
shifting, a model capturing the thermal dynamics
of the building and heating or cooling system is
required in conjunction with a predictive control
strategy. With buildings being complex, often non-
linear in behaviour and no one building constructed
or operated the same way, building control based on
physics based models has often been limited to being
rudimentary and non-predictive. Such approaches
are hence unable to fully harness the energy flexibility
buildings possess. Numerous studies have concluded
that the biggest challenge in the mass adoption of
intelligent building control is the cost and effort
required to capture accurate dynamic models of
buildings (Sturzenegger et al. (2016); Henze (2013)).
On this premise, data-driven approaches show great
potential for efficient and smart building control.
The ”Internet of Things” revolution has led to the
rapid rise and use of sensors in building control and
availability of building data including: HVAC system
data, thermal comfort and internal air quality data,
power consumption data, external weather data and
occupancy data. This provides a significant data
source to train data-driven models. Often there
may be hundreds if not thousands of features at
a modellers disposal. To develop an efficient and
accurate data-driven model of a building, feature
assessment is a critical element of the model de-
velopment framework to avoid unnecessary model
complexity or missing certain building dynamics.
This involves primarily feature selection together
with feature engineering. Feature selection is defined
as the problem of selecting a subset of (m) features
from a larger set (n) features or measurements



to optimise the value of a certain criteria over all
subsets of size m (Narendra and Keinosuke (1977).
Feature engineering is domain specific by nature and
can be a manual, difficult and time-consuming task,
e.g., the addition of external weather data that may
not be included with building BEM data. Guyon
and Elisseeff (2003) give the primary aims of feature
assessment as improving the prediction performance
of the learning model, improving the efficiency and
cost-effectiveness of the learning model and providing
a better understanding of underlying phenomena
and processes driving the response variable. Other
benefits are aiding data visualisation and reducing
data measurement and storage requirements.
This present paper considers the issue of feature
assessment in data-driven models used for predictive
control and provision of energy flexibility. A case
study white-box model of a building is used to gener-
ate a significant database of features from which an
optimal subset of features can be selected through
the use of various feature selection algorithms. This
research and the findings helps a move away from
observational data to experimental data in the field
of data-driven building energy modelling.
The paper is structured as follows: the ’Background’
section introduces the different types of feature
selection algorithms that are in use and presents
a literature review of the seminal works in feature
selection. This is followed by a summary of the
application of feature selection methods in the
realm of building energy modelling and finally the
identified research gap and aim of this study are
presented. Next, the methods used in this case study
are presented along with descriptions of the data
and the case study building. Finally, in the results
section, the various feature selection algorithms are
compared with respect to their performance and
identified features for building energy flexibility anal-
ysis. Note that the terms ’features’ and ’variables’
are often used interchangeably

Background

The main approaches to feature selection can be
categorised as either filters, wrappers or embedded
methods (Guyon and Elisseeff (2003); Molina et al.
(2002)). Filter methods are independent of the cho-
sen machine learning model and are used as a pre-
processing step with features ranked on the basis
of correlation or mutual information criteria. The
wrapper method is specific to the machine learning
model chosen and uses the model to evaluate and
search through subsets of variables. A wide variety
of search techniques can be used, including forward
search, backward search, Recursive Feature Elimi-
nation (RFE), branch-and-bound and Genetic Algo-
rithms (GA), to list a few (Kohavi and John (2011)).
Although wrapper methods are generally more com-

putationally intensive than filter methods, embedded
methods incorporate feature selection as part of the
training process of the model itself and may promise
to be more efficient than wrapper methods (Guyon
and Elisseeff (2003)), i.e., decision/regression trees
and L1 (Lasso) Regularisation.
Current seminal works in feature selection such as
Guyon and Elisseeff (2003) present a key message
that a unifying theoretical framework to feature selec-
tion is lacking due to the diverse approaches available.
They highlight the importance of having baseline per-
formance values to compare any approach selected, to
understand and quantify the benefits of feature selec-
tion. Kohavi and John (2011) present a summary of
wrapper methods with the core components that are
required being a search space, operators, a search en-
gine and an evaluation function. They emphasis that
in general, one should look for optimal features with
respect to the specific learning algorithm or predic-
tor and training set at hand. On a similar thread,
Molina et al. (2002) showed that different feature se-
lection algorithms behave differently to different data
particularities.
The development of data-driven models for building
control and harnessing energy flexibility is a nascent
field. Even when considering data-driven models used
for energy consumption forecasting, few researchers
have developed a systematic approach to feature as-
sessment in the development stage of building a pre-
dictive model. Numerous studies have selected fea-
tures purely based on domain knowledge or the fea-
tures that were actually available. Given that no
one building is the same, individual building char-
acteristics can be missed. Zhao and Magoulès (2012)
claimed their study to be the first attempt to dis-
cuss how to select a subset of features for statistical
models applied to the prediction of building energy
consumption, through two filter approaches (correla-
tion coefficient and gradient guided feature selection).
Kapetanakis et al. (2017) considered the issue of in-
put feature selection looking at linear and monotonic
correlations between the features, but was restricted
to assessing only thermal loads of commercial build-
ings. A few studies have investigated wrapper meth-
ods in the problem of feature selection. Fan et al.
(2014) used RFE together with eight widely used pre-
dictive algorithms. Zhang and Wen (2019) developed
a methodology tested on both real and synthetic data
combining a filter and wrapper approach. The model
which was developed with systematic feature selec-
tion results showed better accuracy and generalisa-
tion in the application of short term building energy
forecasting. Finally, there have also have been some
studies in building energy consumption prediction
utilising embedded methods, e.g., Jain et al. (2014)
used a L1 Lasso in forecasting the energy consump-
tion of multi-family residential buildings with accu-
rate predictions possible without data from external



sensors such as temperature and occupancy.
With data driven models being increasingly used for
building control and for the assessment and provision
of energy flexibility, and given very limited existing
research in data driven models used in this applica-
tion, this paper focuses on the performance of various
feature selection algorithms and analysis of the data
features that are most relevant to this application.
Given the potential benefits of feature selection such
as increased accuracy and simplicity, this work has
the potential to lead to faster and more cost-effective
data-driven models enabling greater energy flexibility
to be unlocked from a larger range of buildings.

Methods

For flexibility assessment, two response variables are
of interest: Zone air temperature (to ensure thermal
comfort limits are not violated and to model the ther-
mal dynamics of the building) and the power con-
sumption of the building (to estimate the change in
power consumption that can be achieved through de-
mand response measures).
This study considers three predictors: linear regres-
sion, Support Vector Regression (SVR) and random
forests. The first two models are chosen as they are
linear (although SVR can map non-linear functions
through the use of kernal functions as explained later)
and hence can easily be integrated with a predictive
control optimisation framework. Random forests are
chosen because they are effective at capturing non-
linear and complex behaviour and the work of Jain
et al. (2016) has shown that random forests are capa-
ble of being integrated with receding horizon control
using the technique of separation of control and dis-
turbance variables.
SVR is a form of Support Vector Machines (SVM)
that finds a decision function or model to represent
the relationship between the features and the target.
Where a linear function is not enough to map the re-
lationship, the problem can be mapped to a higher
dimensional feature space through the use of kernal
functions. See Smola and Scholkopf (2003) for further
details on the formulation.
One of the biggest drawbacks of a classical decision
tree is its tendency to overfit to training data and ran-
dom forests are an ensemble method that was devel-
oped to combat this. Many parallel learners exploit-
ing independence between the learners are averaged
to reduce the error of the ensemble predictor. Each
tree in the ensemble is built from a sample drawn
with replacement (i.e. a bootstrap sample) from the
training set. In addition, instead of using all the fea-
tures, a random subset of features is selected, further
randomizing the tree. See Breiman (2001) for the
seminal work and more detail on random forests.
The overall feature assessment procedure is described
graphically in Figure 1. Further details on each step
are provided below.

Step 1. Generate Synthetic Data

The US Department of Energy Large Office archetype
white-box model (using EnergyPlus) has been taken
and modified to be the testbed building providing
the synthetic data for training the data-driven model
initially (Deru et al. (2011)). This building is a 12
storey building with a floor space of 46,000 m2 (Fig-
ure 1). The building ’core mid’ zone is investigated
as one of the response variables as this zone repre-
sents the majority of the zonal temperatures, being
the largest zone per floor and representing 10 of the
12 floors through symmetry properties of the simula-
tion. The building has a gas boiler for heating, two
water-cooled chillers for cooling and a multizone vari-
able air volume (MZ VAV) system for air distribution.
A combined PV-battery system was added to the ex-
isting model. The building complies with the mini-
mum requirements of ASHRAE Standard 90.1-2004
and the version for climate zone 4C was selected, the
closest climate zone to that of Dublin, Ireland, for
which the weather data is used. Weather data, ex-
tracted from the weather file used in the simulation,
also forms a part of the synthetic data and features
studied. The model uses a simulation time-step of
15 minutes and was simulated for an entire year to
generate the training and test dataset. The data was
split with 75% of the dataset being used for training
(January to September) and 25% for testing (October
to December). The advantages of using a white-box
model to generate synthetic data is that a compre-
hensive database can be generated for training that
can be used to compare the various feature selection
methods without concern for data quality issues that
plague most real datasets from buildings. The ques-
tion of how the feature selection algorithms corre-
spondingly perform on this real data is the subject
of future research. However, note that approximately
13,000 features were available as outputs from the
white-box model of the ’Large Office’ Building with
many of these variables not being practically measur-
able or observable. An initial manual filtering was
done to remove such variables from the EnergyPlus
output to simulate only data that would realistically
be output from a Building Energy Management Sys-
tem (BEMS).

Steps 2-4. Feature Selection (Data Pre-
processing)

Although the synthetic data does not contain any
missing data, this step was added to the workflow
so that when it is used with real data, any feature
that has more than a certain threshold of missing
values is removed from the dataset. Features with a
single value contain no useful information for a pre-
dictive model and hence these are also removed from
the dataset. Redundant features are those that are
highly correlated with one another and hence one of
them is considered redundant as it does not add any
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Figure 1: Feature Assessment Procedure

extra useful information to the dataset. The Pearson
correlation coefficient is used with a threshold value
of 0.9, for feature pairs that are correlated with a
value greater than this threshold, one of the features
is removed from the dataset.

Steps 5 & 6. Feature Engineering

In these steps, features are generated from the raw
data that is output from EnergyPlus. An example of
this is proxy variables such as hour of the day and
day of week. EnergyPlus outputs a timestamp vari-
able that is not suitable for using as a feature in a
predictive model directly. This timestamp variable is
processed to extract variables such as the hour of the
day and day of the week which can have significant
predictive power given the periodic nature of building
occupancy and energy consumption. Lag terms are
also introduced here for the response variable. Nor-
malising or scaling the training data is generally con-
sidered to be good practice in machine learning prob-
lems, especially for linear models where features with
large ranges induce high variance and may become
unnecessarily important. The approach used here is
to scale the data to be in the range of [0,1].

Step 7. Apply & Evaluate Feature Selection
Algorithms

Four feature selection algorithms are compared in
this study, namely, one filter method based on the
Pearson correlation coefficient, two wrapper methods
(RFE and GA) and one embedded method (random
forest). The Pearson correlation coefficient is used
to rank all the features with respect to the response
variable and the features that have a value of greater
than 0.6 are selected. RFE is a backward selection
technique where the model is initially fitted using all
features and then at each iteration a specified number
of features that are the weakest are removed. To find
the optimal number of features, this method is used
with cross-validation to score different subsets, util-
ising the Python Sklearn package (Pedregosa et al.
(2011)). The GA is a heuristic optimisation method
inspired by evolution, where the genes of organisms
tend to evolve over successive generations to be more
successful to the given environment. It is a stochastic
method that can be used for feature selection on a
given predictor that works based on the mechanisms
of natural genetics and biological evolution found in
nature with the three major steps being selection,
crossover and mutation (Chtioui et al. (1998)). In the
case of feature selection, each individual of the popu-
lation represents a candidate subset of features with
each individual being assigned a fitness value based
on a fitness function (here being the prediction error
on the cross-validation sets). In selection, the individ-
uals with a high fitness value are given more chance to
be selected for reproduction. During crossover, por-
tions of the parent solutions are exchanged and finally
in mutation, one or more components of the child in-
dividual are randomly changed. The random forest
has an intrinsic feature importance variable (either
the mean decrease impurity or mean decrease accu-
racy) that is used in constructing the model making
this an embedded method.
All pre-processing of data, feature engineering and
implementation of the above feature selection algo-
rithms was carried out in Python on a server machine
with an Intel(R) Xeon(R) CPU E5-2697 v2 2.7 GHz
and 256 GB of RAM.
To evaluate the performance of the various feature
selection algorithms, two metrics were used: (i) the
root mean squared error (RMSE) of the prediction on
the test set and (ii) the evaluation time of the model
with the selected features on the test dataset. The
RMSE is defined in Equation (1) as:

RMSE =

√∑N
i=1(yi − ŷi)2

N
(1)

where ŷi is the predicted output value and yi is the
actual output variable for the ith sample in the testing
subset. N is the number of samples in the testing
subset.



Results and Discussion

Comparison of Feature Selection Algorithms

The results of the various feature selection algorithms
are compared first with three different predictors: lin-
ear regression, SVR and random forests. The two re-
sponse variables considered in this feature selection
study are the core mid zone temperature and build-
ing total power consumption. For reference, a naive
prediction based purely on the lagged term from a
week prior results with a RMSE of 0.56◦C for the
core mid zone temperature and a RMSE of 6.0 kW
for the building total power consumption.
A comparison of the RMSE achieved by the SVR and
run time for the different FS algorithms for the re-
sponse variable of the core mid zone temperature is
given in Figure 2. As this figure shows, all feature
selection techniques result in significant reductions in
the model evaluation time (over 93% reduction for the
F-P-SVR model) with very minor gains in the pre-
diction RMSE. A comparison of the RMSE achieved
by the random forest predictor and run time for the
different feature selection algorithms is presented in
Figure 3 for the response variable of the building to-
tal power consumption. This figure shows that all
feature selection techniques are able to reduce the
evaluation time of the random forests model signifi-
cantly (between 50% and 92% reductions) but given
that the random forest predictor is inherently an em-
bedded method of feature selection, the addition of
the other feature selection algorithms does not sig-
nificantly reduce the RMSE and, in some cases, even
has a detrimental effect (such as using the F-P-RF
model). The results presented for the embedded case
(E-RF) is essentially the same as the ”All Features”
scenario (ALL-RF) except that hyper-parameter tun-
ing has been employed to optimise the random forest
structure. The random forest predictor is a special
case, as an embedded method of feature selection is

Figure 2: Comparison of FS Algorithms by RMSE
and run time for the SVR Predictor with a response
variable of the core mid zone temperature

Figure 3: Comparison of FS Algorithms by RMSE
and run time for the random forest Predictor with a
response variable of the total building power consump-
tion

Figure 4: Comparison of FS Algorithms by RMSE
with a response variable of the core mid zone temper-
ature

inherently built into the algorithm which means that
additional feature selection techniques are not neces-
sary unless the model run time is a critical concern,
e.g., if the control time step is in the order of seconds.
Figures 4 and 5 summarise the RMSE values achieved
by the selected features for all combinations given in
Figure 1 and generally show the superiority of the
random forest predictor with its embedded feature
selection. It should also be pointed out that whilst
not illustrated here, the wrapper methods of fea-
ture selection can be computationally intensive with
the RFE and GA algorithms taking several hours
to run. Given that model training should be con-
ducted offline in applications utilising data-driven
control, this is considered to be acceptable. Fig-
ure 6 illustrates the predicted and synthetic data val-
ues of the core mid zone temperature for varying n-
steps ahead (from 15 minutes ahead to 1 day ahead)
for a week in November (which is part of the test
dataset) using the random forest with features se-
lected through the inbuilt feature importance method
(embedded method). Hyper-parameter tuning using
a randomised grid search approach is used to tune
the models. The figure shows that the predictive ac-
curacy declines with increasing prediction horizons as



Figure 5: Comparison of FS Algorithms by RMSE
with a response variable of the total building power
consumption

expected (RMSE ranges from 0.24◦C for 1-step ahead
to 0.53◦C for 96-step ahead).

Features Selected

This section investigates the actual features selected
by the various feature selection algorithms. The fol-
lowing tables give a count of the top features selected
by the various combinations of feature selection al-
gorithms and predictors. As Table 1 and Table 2
show, the lag terms are significant for predicting both
the zonal temperature and the building power con-
sumption (1-step ahead). Specific to the core mid
zone temperature, the floor temperature of the zone is
the third most relevant feature signifying the physical
thermal connection between the two. A similar con-
nection exists between the basement and core bottom
zones and the core mid zone temperatures. Consid-
ering the features selected for predicting the building
total power consumption, aside from the lag terms
importance as mentioned above, the power consump-
tion of interior lights and equipment are the most
significant contributors to the total power demand
and this is highlighted in Kathirgamanathan et al.
(2018) where the same building is used as the virtual
DR testbed building. The influence of occupancy on
the power demand is seen through the high relevance
of the zone CO2 concentration which can be taken
to be a proxy measure for occupancy. Finally, the
periodicity of power consumption in this building is
seen through the importance of the ’hour’ proxy vari-
able. This is particularly applicable to commercial
buildings where operation and hence occupancy and
power consumption tends to follow ’standard’ build-
ing operating hours as opposed to residential build-
ings. Interestingly, the control variables that were
kept for the feature selection analysis (fan air speed
and cooling setpoint schedule value) were not nec-
essarily selected through the feature selection algo-
rithms and found to be part of the most optimal sub-
set. This could indicate that the building was not
excited enough in the training data for the control
features to offer much to the predictive model. The
external weather features such as air dry bulb temper-

ature, relative humidity and solar radiation did not
rank very highly for both 1-step ahead response vari-
ables, which is surprising given the amount of liter-
ature where external weather features are used (e.g.,
Fan et al. (2014); Kapetanakis et al. (2017); Drgona
et al. (2018)). However, there are studies that have
similarly found a lack of relevance of external weather

Table 1: Selected features from various FS algorithms
and predictors for response variable of core mid zone
temperature.
Features Selected Count
CORE MID:Zone Thermostat Air Temperature
[C]

9

CORE MID ZN 5 FLOOR:Surface Outside Face
Temperature [C]

8

CORE MID:Zone Thermostat Air Temperature
[C]-1

8

CORE MID:Zone Thermostat Air Temperature
[C]-5

7

CORE MID:Zone Thermostat Air Temperature
[C]-3

6

CORE MID:Zone Thermostat Air Temperature
[C]-4

6

VAV 2:Air System Outdoor Air Heat Recovery By-
pass Minimum Outdoor Air Mixed Air Tempera-
ture [C]

6

GROUNDFLOOR PLENUM WALL
NORTH:Surface Inside Face Temperature [C]

6

CORE BOTTOM: Zone Thermostat Air Temper-
ature [C]

6

CORE MID:Zone Thermostat Air Temperature
[C]-2

6

BATTERY: Electric Storage Simple Charge State
[J]

5

VAV 3 HEATC-VAV 3 FANNODE:System Node
Temperature [C]

5

PERIMETER BOT ZN 2 VAV BOX OUTLET
NODE NAME:System Node Current Density
[kg/m3]

5

BASEMENT:Zone Thermostat Air Temperature
[C]

5

Heating: Gas [J] 5
PERIMETER MID ZN 4 VAV BOX REHEAT
COILDEMAND OUTLET NODE:System Node
Current Density [kg/m3]

4

Table 2: Selected features from various FS algorithms
and predictors for response variable of building total
power consumption.
Features Selected Count
Electricity:Facility [J] 9
Electricity:Facility [J]-3 8
Electricity:Facility [J]-4 8
CORE BOTTOM:Zone Air CO2 Concentration
[ppm]

8

TOPFLOOR PLENUM:Zone Air CO2 Concentra-
tion [ppm]

8

Electricity:Facility [J]-2 8
Electricity:Facility [J]-1 7
InteriorLights:Electricity [J] 7
Fans:Electricity [J] 7
VAV 3 FAN: Fan Air Mass Flow Rate [kg/s] 6
InteriorEquipment:Electricity [J] 6
CORE BOTTOM VAV BOX OUTLET NODE
NAME:System Node Relative Humidity [%]

6

WaterSystems:Gas [J] 6
CORE TOP VAV BOX COMPONENT:Zone Air
Terminal VAV Damper Position [J]

6

Electricity:Facility [J]-5 6



Figure 6: Comparison of predicted (for varying n-steps ahead) and synthetic data (ground truth) values from
model ’E-RF’ with a response variable of the core mid zone temperature for one week in test set

features (e.g., Zhang and Wen (2019); Nghiem and
Jones (2017)). For the core mid zone temperature,
this can be explained by the central location of this
zone in the building damping the effects of external
conditions and the significance of internal gains on the
cooling and heating loads of this zone. For the build-
ing total power consumption, as explained above, the
cooling and heating loads which are most sensitive
to external weather features are relatively small com-
pared to the lighting and equipment loads which dom-
inate the total power consumption. As a method of
validation of the feature selection method, the ran-
dom forest was used to predict the core mid zone
temperature for varying n-steps ahead (from 1-step
ahead to 96-step ahead) with hyperparameter tuning
(Figure 6). Analysing the features selected by this
method, whereas lag terms are quite dominant for 1
and 4 steps ahead, for greater prediction horizons,
this is not the case as expected and markers for pe-
riodicity and occupancy such as ’day’ and zone CO2

concentration are increasingly selected. Although not
included in this study, for longer prediction horizons,
it is expected that weather forecast variables will be
more relevant features.

Conclusion

Feature selection algorithms commonly used in liter-
ature have been applied to a specific case of a syn-
thetic dataset from a commercial building for use in
constructing a predictive model for energy flexibility
applications. The results show that the feature selec-
tion techniques generally offer significant reductions
in the model evaluation time (ranging from 50% to
94% reductions) and for the predictors selected, did
not make any significant difference in the predictor
accuracy. The choice of feature selection algorithm
should generally be made based on the predictor used,
for example if one has selected the random forest as
the predictor to be used, applying a wrapper feature

selection method may be considered to be unneces-
sary. The random forest model with embedded fea-
ture (E-RF) selection was found to give the best accu-
racy considering both the zone temperature and total
power consumption response variables.
For the virtual building considered in this study, fea-
ture selection showed that the lag terms of both re-
sponse variables were highly relevant and most fea-
ture selection algorithms ended up choosing up to
five lagged terms. For the core mid zone tempera-
ture, the feature selection picked up on thermal con-
nections to adjacent surfaces and zones with these
features being selected frequently. For the building
total power demand, the high portion of power con-
sumption dedicated to interior lights and equipment
was revealed and this also explains the importance of
a proxy variable such as hour of the day. The relative
unimportance of external weather features was found
to be the case for this particular building. This work
identifies the important features for development of
a data-driven model to harness the energy flexibility
available in this case study building. This methodol-
ogy can be repeated with any building and allows the
specification of what experimental data is required
from a building.
Given that receding horizon control problems require
sufficiently accurate predictions over the range of the
prediction horizon, future work should consider the
issue of balancing the differing optimal variables be-
tween short-term predictions and longer-term predic-
tions. Further work is also required to determine the
importance of weather predictions on longer predic-
tion horizons. The approach also needs to be applied
to real data from a building. Real data has stochas-
ticity that this synthetic data used in this study is
missing as well as data-quality issues that a feature
selection methodology needs to be robust against.
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